Global existence and asymptotic behavior of smooth solutions for a bipolar Euler-Poisson system in the quarter plane

نویسنده

  • Yeping Li
چکیده

In the article, a one-dimensional bipolar hydrodynamic model (Euler-Poisson system) in the quarter plane is considered. This system takes the form of Euler-Poisson with electric field and frictional damping added to the momentum equations. The global existence of smooth small solutions for the corresponding initial-boundary value problem is firstly shown. Next, the asymptotic behavior of the solutions towards the nonlinear diffusion waves, which are solutions of the corresponding nonlinear parabolic equation given by the related Darcy’s law, is proven. Finally, the optimal convergence rates of the solutions towards the nonlinear diffusion waves are established. The proofs are completed from the energy methods and Fourier analysis. As far as we know, this is the first result about the optimal convergence rates of the solutions of the bipolar Euler-Poisson system with boundary effects towards the nonlinear diffusion waves. Mathematics Subject Classification: 35M20; 35Q35; 76W05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global existence and asymptotic behavior of the solutions to the 3D bipolar non-isentropic Euler–Poisson equation∗

Abstract. In this paper, the global existence of smooth solutions for the three-dimensional (3D) non-isentropic bipolar hydrodynamic model is showed when the initial data are close to a constant state. This system takes the form of non-isentropic Euler–Poisson with electric field and frictional damping added to the momentum equations. Moreover, the L-decay rate of the solutions is also obtained...

متن کامل

A geometric approximation to the Euler equations : the Vlasov-Monge-Ampère system

This paper studies the Vlasov-Monge-Ampère system (VMA), a fully non-linear version of the Vlasov-Poisson system (V P ) where the (real) Monge-Ampère equation det ∂ Ψ ∂xi∂xj = ρ substitutes for the usual Poisson equation. This system can be derived as a geometric approximation of the Euler equations of incompressible fluid mechanics in the spirit of Arnold and Ebin. Global existence of weak sol...

متن کامل

Asymptotic Behavior of Subsonic Entropy Solutions of the Isentropic Euler-poisson Equations

The hydrodynamic model for semiconductors in one dimension is considered. For perturbated Riemann data, global subsonic (weak) entropy solutions, piecewise continuous and piecewise smooth solutions with shock discontinuities are constructed and their asymptotic behavior is analyzed. In subsonic domains, the solution is smooth and, exponentially as t —> oo, tends to the corresponding stationary ...

متن کامل

Subsonic Flows for the Full Euler Equations in Half Plane

We study the subsonic flows governed by full Euler equations in the half plane bounded below by a piecewise smooth curve asymptotically approaching x1-axis. Nonconstant conditions in the far field are prescribed to ensure the real Euler flows. The Euler system is reduced to a single elliptic equation for the stream function. The existence, uniqueness and asymptotic behaviors of the solutions fo...

متن کامل

Global Smooth Ion Dynamics in the Euler-poisson System

A fundamental two-fluid model for describing dynamics of a plasma is the Euler-Poisson system, in which compressible ion and electron fluids interact with their self-consistent electrostatic force. Global smooth electron dynamics were constructed in Guo [9] due to dispersive effect of the electric field. In this paper, we construct global smooth irrotational solutions with small amplitude for i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012